

PII: S0040-4039(97)01733-4

SCORZONEROSIDES A, B, AND C, NOVEL TRITERPENE OLIGOGLYCOSIDES WITH HEPATOPROTECTIVE EFFECT FROM CHINESE BUPLEURI RADIX, THE ROOTS OF Bupleurum scorzonerifolium Willd.

Masayuki Yoshikawa,* Toshiyuki Murakami, Kazuhiro Hirano, Masahiro Inadzuki, Kiyofumi Ninomiya, and Hisashi Matsuda

Kyoto Pharmaceutical University, 5, Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607, Japan

Abstract: Triterpene glycoside adonitol esters, scorzonerosides A, B, and C, were isolated from Chinese Bupleuri Radix, the roots of *Bupleurum scorzonerifolium*. Their absolute stereostructures were elucidated on the physicochemical and chemical evidence, which included the synthesis of the adonitol moiety from D-ribose. Scorzonerosides A, B, and C were found to show hepatoprotective effect on liver injury induced by D-galactosamine and lipopolysaccharide in mice. © 1997 Elsevier Science Ltd.

Bupleuri Radix ("柴胡" in Chinese), one of most important natural drugs in Chinese traditional medicine, is prescribed as an anti-inflammatory, antipyretic, and anti-hepatitis agent in many traditional preparations. Previous investigations of this natural medicine led to the isolation of many oleanene-type triterpene monodesmosides¹ and various less polar compounds.² In the course of our studies in search of bioactive principles from Chinese natural medicine³ and medicinal foodstuffs,⁴ the glycosidic fraction from a Chinese Bupleuri Radix , the roots of *Bupleurum scorzonerifolium* WILLD. (Umbelliferae), was found to show potent protective effect on liver injury induced by D-galactosamine (D-GalN) and lipopolysaccharide (LPS) in mice. From the active glycosidic fraction, novel triterpene glycosides having an adonitol ester moiety called scorzonerosides A (1), B (2), and C (3) were isolated together with common triterpene monodesmosides saikosaponins and bupleurosides. This communication deals with the structure elucidation of 1—3 and their hepatoprotective effects.

The MeOH extract from the roots of *B. scorzonerifolium* was partitioned into an AcOEt-water mixture and the watersoluble portion was extracted with *n*-BuOH. The *n*-BuOH-soluble portion (so-called glycosidic fraction) with hepatoprotective effect was subjected to ordinary- (BW-200, CHCl₃-MeOH-H₂O) and reversed-phase (ODS DM1020T, MeOH-H₂O) silica-gel column chromatography and finally HPLC (YMC-Pack D-ODS-5, MeOH-H₂O) to give 1 (0.006% from the natural medicine), 2 (0.004%), and 3 (0.0003%).

Scorzoneroside A (1), mp 215–217 °C, $[\alpha]_D^{25}$ -47.3° (*c*=0.1, MeOH), CD (MeOH) : $[\theta]_{230}$ -1500 (neg. max.), C₅₃H₈₃O₂₄, showed absorption bands at 3422, 1719, 1655, and 1073 cm⁻¹ due to hydroxyl, ester, and olefin functions in the IR spectrum, while its UV spectrum indicated the presence of a hetero-annular diene chromophore by a characteristic triplet with absorption maxima at 243 (log ε 4.30), 252 (4.34), and 260 (4.16) nm. Alkaline hydrolysis of 1 with 5% aq. NaOH liberated prosapogenol 4⁵ and adonitol glucoside (10). Acid hydrolysis of 4 with 5% aq. H₂SO₄-dioxane (1 : 1) furnished a new sapogenol bupleurogenin-a (6)⁶ together with D-fucose and D-glucose, which were identified by GLC analysis of their TMS thiazolidine derivatives.⁷ The ¹H-NMR (pyridine-d₅) and ¹³C-NMR (Table I) spectra of 4 showed signals due to the β -D-fucopyranosyl [δ 1.47 (d, *J*=6.4 Hz, 6'-H₃), 5.34 (d, *J*=7.6 Hz, 1'-H)], β -D-glucopyranosyl [δ 5.00 (d, *J*=7.9 Hz, 1"-H)], and bupleurogenin-a moieties [δ 3.72, 4.40 (both m, 23-H₂), 3.84, 4.40 (both m, 28-H₂), 4.31 (dd, *J*=4.9, 12.6 Hz, 3-H), 4.85 (br s, 16-H), 5.74 (d, *J*=10.7 Hz, 12-H), 6.76 (d-like, 11-H)]. The olean-11,13-diene skeleton and the positions of the hydroxyl groups of 4 and 6 were characterized on the basis of ¹H-¹H COSY and H-C HMBC experimental results as shown in the Chart. Furthermore, in the ROESY experiment of 1, ROE correlations were observed between the following protons : 16-H

and 22 α -H, 21 β -H and 30-H₃, 22 β -H and 28-H₂, 22 β -H and 30-H₃. Finally, by comparison of the ¹H-NMR, ¹³C-NMR, and CD data for 4 and 6 with those for saikosaponin b_2^8 and saikogenin D,⁹ the structures of prosapogenol (4) and bupleurogenina (6) were characterized as shown.

Acid hydrolysis of 10 liberated adonitol and D-glucose, while acetylation of 10 with Ac₂O-pyridine furnished the octaacetate (10a).¹⁰ In order to elucidate the stereostructure of 10, we carried out the chemical synthesis of 10 and its isomer 15 from D-ribose and D-glucose. Namely, 5-monomethoxytrityl D-ribose (7), which was obtained by tritylation of D-ribose with monomethoxytrityl chloride (MMTrCl)-pyridine, was treated with NaBH₄ to give 8 { $[\alpha]_D^{25} + 2.4^\circ (c=2.0, MeOH)$ } in 89% yield. Benzylation of 8 followed by detritylation with *p*-TsOH furnished 9 in 79% yield, which was subjected to glycosidation with *O*-(2,3,4,6-tetra-*O*-acetyl-D-glucopyranosyl)trichloroacetimidate in dry CH₂Cl₂ in the presence of BF₃-etherate followed by deprotection and then acetylation to provide 10a in 52% yield from 9. On the other hand, 6-*t*-butyldiphenylsilyl (TBDPS) D-ribose (11) was subjected to NaBH₄ reduction followed by monomethoxytritylation to yield 12, which was treated with *n*-Bu₄NF to give 13 { $[\alpha]_D^{25} - 2.2^\circ (c=1.2, MeOH)$ }. By the same procedure to 10 and 10a from 8, their isomers 15 and 15a¹¹ were synthesized from 13 via 14 for comparison of their the physical data with those of 10 and 10a.

	1	2	3	4		1	2	3	4	
C-1	38.4	38.4	38.5	38.5	C-28	65.0	64.8	64.9	65.1	
C-2	26.1	26.1	26.0	26.1	C-29	178.6	179.0	179.0	181.2	
C-3	81.7	81.7	81.8	81.6	C-30	21.0	21.0	21.1	21.5	
C-4	43.6	43.7	43.7	43.7	Fuc-1'	106.5	106.0	106.5	106.0	
C-5	47.3	47.3	47.5	47.4	2'	71.5	71.5	72.4	71.6	
C-6	18.2	18.2	18.3	18.3	3'	85.2	85.2	75.5	85.7	
C-7	32.3	32.2	32.3	32.3	4'	72.1	72.1	73.0	72.2	
C-8	41.1	41.1	41.2	41.1	5'	71.0	71.0	71.3	71.0	
C-9	54.0	54.0	54.0	54.0	6'	17.2	17.3	17.5	17.2	
C-10	36.5	36.5	36.6	36.5	Glc-1"	106.6	106.7		106.7	
C-11	126.0	126.0	126.0	126.1	2"	75.8	75.8		75.8	
C-12	127.0	126.9	127.0	126.9	3"	78.3	78.4		78.4	
C-13	137.6	137.6	137.6	137.4	4"	71.8	71.8		71.8	
C-14	42.0	42.0	42.1	42.1	5"	78.7	78.7		78.7	
C-15	31.8	31.8	31.9	31.9	6"	62.7	62.7		62.7	
C-16	67.6	67.5	67.9	67.8	Ado-1'''	64.9	67.5	67.6		
C-17	45.3	45.3	45.4	45.5	2'''	75.4	72.3	72.4		
C-18	130.6	130.7	130.7	131.3	3'''	72.8	74.1	74.2		
C-19	33.4	33.5	33.6	33.8	4'''	74.1	74.4	74.4		
C-20	44.2	44.2	44.3	44.0	5'''	72.8	64.8	64.9		
C-21	30.8	30.7	30.8	31.2	Glc-1""	105.3				
C-22	23.9	23.8	23.9	24.2	2''''	75.1				
C-23	64.1	64.0	64.4	64.1	3''''	74.2				
C-24	13.1	13.1	13.1	13.1	4''"	71.8				
C-25	18.9	18.9	18.9	18.9	5""	78.4				
C-26	17.2	17.3	17.3	17.2	6""	64.9				
C-27	21.9	21.8	21.8	21.9						

Table I. ¹³C-NMR Data of Scorzonerosides A (1), B (2), and C (3) and Prosapogenol (4)

125MHz, pyridine-d5

The ¹H-NMR (pyridine- d_5) and ¹³C-NMR (Table I) spectra of 1 indicated the presence of the prosapogenol (4) moiety [δ 3.71, 4.37 (both m, 23-H₂), 3.75, 4.27 (both m, 28-H₂), 4.32 (m, 3-H), 4.78 (br s, 16-H), 4.99 (d, J=7.9 Hz, 1'-H), 5.34 (d, J=7.9 Hz, 1"-H), 5.73 (d, J=11.0 Hz, 12-H), 6.65 (dd-like, 11-H)] and β -D-glucopyranosyl adonitol moiety [δ 4.04 (m, 2"-H), 4.37, 4.85 (both m, 5"'-H₂), 4.50 (m. 4"'-H), 4.76, 5.04 (both dd-like, 1"'-H₂), 4.95 (d, J=7.9 Hz, 1"''-H)]. The HMBC experiment of 1 showed long-range correlations between the following protons and carbons : 1"-H and 3'-C, 1''-H and 3-C, 1"''-H and 5'''-C, 5'''-H₂ and 4'''-C, 1"'-H₂ and 29, 2"'-C. The above evidence led us to confirm the total structure of scorzoneroside A (1) including the absolute structure of the adonitol glucoside moiety.

Scorzonerosides B $(2)^{12}$ and C $(3)^{13}$ furnished 4 and a new prosapogenol 5, respectively, together with the common adonitol by the alkaline hydrolysis. The structure of prosapogenol 5 was clarified on the basis of the ¹H-NMR and ¹³C-NMR data and the chemical evidence including the acid hydrolysis of 5. The carbon signals in the ¹³C-NMR (Table I) spectrum of 2 were found to be superimposable on those of 1, except for the signals due to the 29-adonitol moiety, whereas the carbon signals in the ¹³C-NMR (Table I) of 3 were very similar to those of 2, except for the signals due to the 3-terminal glucopyranosyl moiety of 2. The H-C HMBC experiments of 2 and 3 showed long-range correlations between the 1^{'''}methylene protons of the adonitol moiety and the 29-carboxyl carbon. Finally, monotritylation of 2 and 3 followed by alkaline hydrolysis liberated 8, which was an optical active intermediate in previous adonitol β -D-glucoside (10) synthesis. Consequently, the total structures of scorzonerosides B (2) and C (3) including the absolute stereostructure of the adonitol moiety were clarified as shown. Protective effects of scorzonerosides (1-3) on liver injury induced by D-GalN and LPS in mice¹⁴⁾ are summarized in Table II. Since all scorzonerosides (1-3) were found to exhibit protective effect on the liver injury, these compounds may be related to the traditional effects of this natural medicine.

	Dose	N	s-GPT	s-GOT
	(mg/kg, <i>i.p.</i>)		(K.U.)	(K.U.)
control	-	15	6878±879	6349±765
scorzoneroside A (1)	10	15	4088±928*	3940±1029
	20	9	2638±375**	2707±412*
scorzoneroside B (2)	10	15	3206±655**	3091±622**
scorzoneroside C (3)	10	10	1560±509**	1427±446**
normal (saline)	-	10	16±1**	51±4**

Table II. Inhibitory Effects of Scorzonerosides A (1), B (2), and C (3) on D-GalN/LPS Induced Liver Injury

Male ddy mice weighing about 25–27 g were used. After 20 h of fasting, a mixture of D-GalN and LPS from Salmonella enteritidis was injected intraperitoneally (i.p.) at a dose of 350 mg/kg and 10 µg/kg to produce liver injury. Each test sample was administered *i.p.* 1 h before D-GalN/LPS injection. Blood samples were collected 10 h after D-GalN/LPS injection, and serum GPT and GOT levels determined by Reitman and Frankel's method. Each value represents the mean \pm S.E. (**p<0.01).

References and Notes

- (a) Nose, M.; Amagasa, S.; Takeda, T.; Ogihara, Y. Chem. Pharm. Bull. 1989, 37, 1293-1296. (b) Pistelli, L.; Cammilli, A.; Manunta, A.; Marsili, A.; Morelli, I. Phytochemistry 1993, 33, 1537-1539.
- 2. Morita, M.; Nakajima, K.; Ikeya, Y.; Mitsuhashi, H. Phytochemistry 1991, 30, 1543-1545.
- 3. Yoshikawa, M.; Murakami, T.; Ikebata, A.; Wakao, S.; Murakami, N.; Matsuda, H.; Yamahara, J. Chem. Pharm. Bull. 1997, 45, 1186-1192, and previous papers cited therein.
- Yoshikawa, M.; Shimada, H.; Komatsu, H.; Sakurama, T.; Nishida, N.; Yamahara, J.; Shimoda, H.; Matsuda, H.; Tani, T. Chem. Pharm. Bull. 1997, 45, 877—822, and previous papers cited therein.
- 5. 4 : mp 243—246 °C, $[\alpha]_D^{25}$ -11.9° (*c*=0.1, MeOH), CD (MeOH) : $[\theta]_{230}$ -2000 (neg. max.), $C_{42}H_{70}O_{14}$, IR (KBr) : 3453, 1702, 1655, 1074 cm⁻¹. ¹H-NMR (pyridine-*d*₅) δ : 4.32 (m, 3-H), 4.85 (br s, 16-H), 5.00 (d, *J*=7.9 Hz, 1'-H), 5.34 (d, *J*=7.6 Hz, 1''-H), 5.75 (d, *J*=10.7 Hz, 12-H), 6.76 (d-like, 11-H). Positive-ion FAB-MS : *m/z* 833 (M+Na)⁺.
- 6. 6 : mp 202—205 °C, [α]_D²⁵ +19.9 °C (c=0.1, MeOH), C₃₀H₄₆O₆, IR (KBr) : 3425, 1702, 1046 cm⁻¹. ¹H-NMR (pyridine-d₅) δ : 3.72, 4.18 (both m, 28-H₂), 3.82, 4.35 (both m, 23-H₂), 4.24 (dd-like, 3-H), 4.83 (br s, 16-H), 5.76 (d, J=10.6 Hz, 12-H), 6.78 (dd-like, 11-H). Positive-ion FAB-MS : m/z 525 (M+Na)⁺.
- 7. Hara, S.; Okabe, H.; Mihashi, K. Chem. Pharm. Bull. 1986, 34, 1843-1845.
- 8. Shimaoka, A.; Seo, S.; Minato, H. J. Chem. Soc. Perkin Trans. 1 1975, 1, 2043-2048.
- 9. Kubota, T.; Hinoh, H. Tetrahedron Lett. 1966, 39, 4725-4728.
- 10. **10a** : $[\alpha]_D^{25}$ -18.0° (*c*=0.1, MeOH), C₂₇H₃₈O₁₈, IR (KBr) 1752, 1225, 1042 cm⁻¹. ¹H-NMR (CDCl₃) δ : 3.61 (dd, J=6.4, 11.3 Hz), 4.02 (dd, J=3.6, 11.3 Hz) (5^{III}-H₂), 3.68 (ddd, J=2.4, 4.5, 10.0 Hz, 5^{IIII}-H), 4.14 (m), 4.25 (dd, J=4.6, 12.2 Hz) (6^{IIII}-H₂), 4.15 (m), 4.33 (dd, J=3.0, 12.3 Hz) (1^{III}-H₂), 4.51 (d, J=7.9 Hz, 1^{IIII}-H), 4.97 (dd, J=7.9, 9.5 Hz, 2^{IIII}-H), 5.08 (dd-like, 4^{IIII}-H), 5.17 (dd-like, 3^{IIII}-H), 5.20-5.30 (m, 2^{IIII}, 3^{IIII}, 4^{IIII}-H). Positive-ion FAB-MS : *m/z* 651 (M+H)⁺.
- 11. **15a** : $[\alpha]_D^{25}$ +2.5° (*c*=0.1, MeOH), C₂₇H₃₈O₁₈, IR (KBr) 1752, 1225, 1042 cm⁻¹, ¹H-NMR (CDCl₃) δ : 3.70 (ddd, *J*=2.4, 4.5, 10.0 Hz, 5^(m)-H), 3.80 (dd, *J*=3.0, 11.6 Hz), 4.02 (dd, *J*=6.1, 11.6 Hz) (5^(m)-H₂), 4.13 (m), 4.25 (dd, *J*=5.2, 12.8 Hz) (6^(m)-H₂), 4.15 (m), 4.32 (dd, *J*=2.8, 11.9 Hz) (1^(m)-H₂), 4.54 (d, *J*=7.9 Hz, 1^(m)-H), 4.94 (dd, *J*=7.9, 10.1 Hz, 2^(m)-H), 5.08 (dd-like, 4^(m)-H), 5.19 (dd-like, 3^(m)-H), 5.20–5.26 (m, 2^(m), 3^(m), 4^(m)-H). Positive-ion FAB-MS : *m*/z 651 (M+H)⁺.
- 12. 2 : mp 226-228 °C, $[\alpha]_D^{25}$ -36.0° (*c*=0.1, MeOH), C₄₇H₇₆O₁₉, UV (MeOH, log ε) : 243 (4.30), 252 (4.34), 260 (4.16) nm. IR (KBr) : 3420, 1707, 1655, 1073 cm⁻¹. ¹H-NMR (pyridine-*d*₅) δ : 4.32 (m, 3-H), 4.41, 4.58 (both m, 5th-H₂), 4.80 (br s, 16-H), 4.96, 5.10 (both dd-like, 1th-H₂), 5.01 (d, *J*=7.9 Hz, 1'-H), 5.36 (d, *J*=7.9 Hz, 1^t-H), 5.68 (d, *J*=10.3 Hz, 12-H), 6.61 (dd-like, 11-H). Positive-ion FAB-MS : *m/z* 967 (M+Na)⁺.
- 13. 3 : mp 208-211 °C, $[\alpha]_D^{25}$ +12.2° (*c*=0.1, MeOH), C41H₆₆O₁₄, UV (MeOH, log ε) : 243 (4.25), 252 (4.29), 260 (4.11) nm. IR (KBr) : 3419, 1706, 1655, 1071 cm⁻¹. ¹H-NMR (pyridine-*d*₅) δ : 4.30 (m, 3-H), 4.40, 4.57 (both m, 5"-H₂), 4.81 (br s, 16-H), 4.96, 4.98 (both dd-like, 1"-H₂), 5.01 (d, *J*=7.9 Hz, 1'-H), 5.69 (d, *J*=10.4, 12-H), 6.62 (dd, *J*=2.8, 10.4 Hz, 11-H). Positive-ion FAB-MS : *m/z* 805 (M+Na)⁺.
- 14. Tiegs, G.; Wolter, M.; Wendel, A. Biochemical Pharmacology, 1989, 38, 627-631.

(Received in Japan 14 July 1997; revised 20 August 1997; accepted 22 August 1997)